👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Equazione Differenziale Lineare

Equazione differenziale lineare Calculator

Get detailed solutions to your math problems with our Equazione differenziale lineare step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of linear differential equation. This solution was automatically generated by our smart calculator:

$x\frac{dy}{dx}-2y=x^3cos\left(x\right)$
2

Divide all the terms of the differential equation by $x$

$\frac{x}{x}\frac{dy}{dx}+\frac{-2y}{x}=\frac{x^3\cos\left(x\right)}{x}$

Simplify the fraction $\frac{x}{x}$ by $x$

$1\left(\frac{dy}{dx}\right)+\frac{-2y}{x}=\frac{x^3\cos\left(x\right)}{x}$

Any expression multiplied by $1$ is equal to itself

$\frac{dy}{dx}+\frac{-2y}{x}=\frac{x^3\cos\left(x\right)}{x}$

Simplify the fraction $\frac{x^3\cos\left(x\right)}{x}$ by $x$

$\frac{dy}{dx}+\frac{-2y}{x}=x^{2}\cos\left(x\right)$
3

Simplifying

$\frac{dy}{dx}+\frac{-2y}{x}=x^{2}\cos\left(x\right)$
4

We can identify that the differential equation has the form: $\frac{dy}{dx} + P(x)\cdot y(x) = Q(x)$, so we can classify it as a linear first order differential equation, where $P(x)=\frac{-2}{x}$ and $Q(x)=x^{2}\cos\left(x\right)$. In order to solve the differential equation, the first step is to find the integrating factor $\mu(x)$

$\displaystyle\mu\left(x\right)=e^{\int P(x)dx}$

Compute the integral

$\int\frac{-2}{x}dx$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$-2\ln\left|x\right|$
5

To find $\mu(x)$, we first need to calculate $\int P(x)dx$

$\int P(x)dx=\int\frac{-2}{x}dx=-2\ln\left(x\right)$

Simplify $e^{-2\ln\left|x\right|}$ by applying the properties of exponents and logarithms

$x^{-2}$
6

So the integrating factor $\mu(x)$ is

$\mu(x)=x^{-2}$

When multiplying exponents with same base we can add the exponents

$\frac{dy}{dx}x^{-2}+\frac{-2y}{x}x^{-2}=x^{2-2}\cos\left(x\right)$

Add the values $2$ and $-2$

$\frac{dy}{dx}x^{-2}+\frac{-2y}{x}x^{-2}=x^{0}\cos\left(x\right)$

Any expression (except $0$ and $\infty$) to the power of $0$ is equal to $1$

$\frac{dy}{dx}x^{-2}+\frac{-2y}{x}x^{-2}=\cos\left(x\right)$

Multiplying the fraction by $x^{-2}$

$\frac{dy}{dx}x^{-2}+\frac{-2yx^{-2}}{x}=\cos\left(x\right)$

Simplify the fraction $\frac{-2yx^{-2}}{x}$ by $x$

$\frac{dy}{dx}x^{-2}-2yx^{-3}=\cos\left(x\right)$
7

Now, multiply all the terms in the differential equation by the integrating factor $\mu(x)$ and check if we can simplify

$\frac{dy}{dx}x^{-2}-2yx^{-3}=\cos\left(x\right)$
8

We can recognize that the left side of the differential equation consists of the derivative of the product of $\mu(x)\cdot y(x)$

$\frac{d}{dx}\left(x^{-2}y\right)=\cos\left(x\right)$
9

Integrate both sides of the differential equation with respect to $dx$

$\int\frac{d}{dx}\left(x^{-2}y\right)dx=\int\cos\left(x\right)dx$
10

Simplify the left side of the differential equation

$x^{-2}y=\int\cos\left(x\right)dx$

Apply the integral of the cosine function: $\int\cos(x)dx=\sin(x)$

$\sin\left(x\right)$

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\sin\left(x\right)+C_0$
11

Solve the integral $\int\cos\left(x\right)dx$ and replace the result in the differential equation

$x^{-2}y=\sin\left(x\right)+C_0$

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{1}{x^{\left|-2\right|}}y$

Multiplying the fraction by $y$

$\frac{y}{x^{\left|-2\right|}}$
12

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{1}{x^{2}}y=\sin\left(x\right)+C_0$

Multiply the fraction by the term $y$

$\frac{1y}{x^{2}}=\sin\left(x\right)+C_0$

Any expression multiplied by $1$ is equal to itself

$\frac{y}{x^{2}}=\sin\left(x\right)+C_0$
13

Multiply the fraction by the term $y$

$\frac{y}{x^{2}}=\sin\left(x\right)+C_0$

Multiply both sides of the equation by $x^{2}$

$y=x^{2}\left(\sin\left(x\right)+C_0\right)$
14

Find the explicit solution to the differential equation. We need to isolate the variable $y$

$y=x^{2}\left(\sin\left(x\right)+C_0\right)$

Final answer to the problem

$y=x^{2}\left(\sin\left(x\right)+C_0\right)$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!