πŸ‘‰ Prova ora NerdPal! La nostra nuova app di matematica su iOS e Android
  1. calcolatori
  2. Matrices

Calcolatrice di Matrices

Risolvete i vostri problemi di matematica con la nostra calcolatrice Matrices passo-passo. Migliorate le vostre abilitΓ  matematiche con il nostro ampio elenco di problemi impegnativi. Trova tutte le nostre calcolatrici qui.

Digitare un problema o una domanda di matematica

ModalitΓ  simbolica
ModalitΓ  testo
Go!
1
2
3
4
5
6
7
8
9
0

a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(β—»)
+
-
Γ—
β—»/β—»
/
Γ·
β—»2
β—»β—»
βˆšβ—»
√

β—»βˆšβ—»
β—»βˆš
∞
e
Ο€
ln
log
logβ—»
lim
d/dx
Dβ–‘x
∫
βˆ«β—»
|β—»|
ΞΈ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of matrices. This solution was automatically generated by our smart calculator:

∫1(xβˆ’1)2(x+4)2dx\int\frac{1}{\left(x-1\right)^2\left(x+4\right)^2}dx

Rewrite the fraction 1(xβˆ’1)2(x+4)2\frac{1}{\left(x-1\right)^2\left(x+4\right)^2} in 44 simpler fractions using partial fraction decomposition

1(xβˆ’1)2(x+4)2=A(xβˆ’1)2+B(x+4)2+Cxβˆ’1+Dx+4\frac{1}{\left(x-1\right)^2\left(x+4\right)^2}=\frac{A}{\left(x-1\right)^2}+\frac{B}{\left(x+4\right)^2}+\frac{C}{x-1}+\frac{D}{x+4}

Find the values for the unknown coefficients: A,B,C,DA, B, C, D. The first step is to multiply both sides of the equation from the previous step by (xβˆ’1)2(x+4)2\left(x-1\right)^2\left(x+4\right)^2

1=(xβˆ’1)2(x+4)2(A(xβˆ’1)2+B(x+4)2+Cxβˆ’1+Dx+4)1=\left(x-1\right)^2\left(x+4\right)^2\left(\frac{A}{\left(x-1\right)^2}+\frac{B}{\left(x+4\right)^2}+\frac{C}{x-1}+\frac{D}{x+4}\right)

Multiplying polynomials

1=(xβˆ’1)2(x+4)2A(xβˆ’1)2+(xβˆ’1)2(x+4)2B(x+4)2+(xβˆ’1)2(x+4)2Cxβˆ’1+(xβˆ’1)2(x+4)2Dx+41=\frac{\left(x-1\right)^2\left(x+4\right)^2A}{\left(x-1\right)^2}+\frac{\left(x-1\right)^2\left(x+4\right)^2B}{\left(x+4\right)^2}+\frac{\left(x-1\right)^2\left(x+4\right)^2C}{x-1}+\frac{\left(x-1\right)^2\left(x+4\right)^2D}{x+4}

Simplifying

1=(x+4)2A+(xβˆ’1)2B+(xβˆ’1)(x+4)2C+(xβˆ’1)2(x+4)D1=\left(x+4\right)^2A+\left(x-1\right)^2B+\left(x-1\right)\left(x+4\right)^2C+\left(x-1\right)^2\left(x+4\right)D

Assigning values to xx we obtain the following system of equations

1=25Aβ€…β€…β€…β€…β€…β€…β€…(x=1)1=9A+4Bβˆ’18C+12Dβ€…β€…β€…β€…β€…β€…β€…(x=βˆ’1)1=25Bβ€…β€…β€…β€…β€…β€…β€…(x=βˆ’4)1=64A+9B+192C+72Dβ€…β€…β€…β€…β€…β€…β€…(x=4)\begin{matrix}1=25A&\:\:\:\:\:\:\:(x=1) \\ 1=9A+4B-18C+12D&\:\:\:\:\:\:\:(x=-1) \\ 1=25B&\:\:\:\:\:\:\:(x=-4) \\ 1=64A+9B+192C+72D&\:\:\:\:\:\:\:(x=4)\end{matrix}

Proceed to solve the system of linear equations

25A+0B+0C+0D=19A+4Bβˆ’18C+12D=10A+25B+0C+0D=164A+9B+192C+72D=1\begin{matrix}25A & + & 0B & + & 0C & + & 0D & =1 \\ 9A & + & 4B & - & 18C & + & 12D & =1 \\ 0A & + & 25B & + & 0C & + & 0D & =1 \\ 64A & + & 9B & + & 192C & + & 72D & =1\end{matrix}

Rewrite as a coefficient matrix

(25000194βˆ’18121025001649192721)\left(\begin{matrix}25 & 0 & 0 & 0 & 1 \\ 9 & 4 & -18 & 12 & 1 \\ 0 & 25 & 0 & 0 & 1 \\ 64 & 9 & 192 & 72 & 1\end{matrix}\right)

Reducing the original matrix to a identity matrix using Gaussian Elimination

(100012501001250010βˆ’212500012125)\left(\begin{matrix}1 & 0 & 0 & 0 & \frac{1}{25} \\ 0 & 1 & 0 & 0 & \frac{1}{25} \\ 0 & 0 & 1 & 0 & -\frac{2}{125} \\ 0 & 0 & 0 & 1 & \frac{2}{125}\end{matrix}\right)

The integral of 1(xβˆ’1)2(x+4)2\frac{1}{\left(x-1\right)^2\left(x+4\right)^2} in decomposed fractions equals

125(xβˆ’1)2+125(x+4)2+βˆ’2125(xβˆ’1)+2125(x+4)\frac{1}{25\left(x-1\right)^2}+\frac{1}{25\left(x+4\right)^2}+\frac{-2}{125\left(x-1\right)}+\frac{2}{125\left(x+4\right)}
2

Rewrite the fraction 1(xβˆ’1)2(x+4)2\frac{1}{\left(x-1\right)^2\left(x+4\right)^2} in 44 simpler fractions using partial fraction decomposition

125(xβˆ’1)2+125(x+4)2+βˆ’2125(xβˆ’1)+2125(x+4)\frac{1}{25\left(x-1\right)^2}+\frac{1}{25\left(x+4\right)^2}+\frac{-2}{125\left(x-1\right)}+\frac{2}{125\left(x+4\right)}
3

Expand the integral ∫(125(xβˆ’1)2+125(x+4)2+βˆ’2125(xβˆ’1)+2125(x+4))dx\int\left(\frac{1}{25\left(x-1\right)^2}+\frac{1}{25\left(x+4\right)^2}+\frac{-2}{125\left(x-1\right)}+\frac{2}{125\left(x+4\right)}\right)dx into 44 integrals using the sum rule for integrals, to then solve each integral separately

∫125(xβˆ’1)2dx+∫125(x+4)2dx+βˆ«βˆ’2125(xβˆ’1)dx+∫2125(x+4)dx\int\frac{1}{25\left(x-1\right)^2}dx+\int\frac{1}{25\left(x+4\right)^2}dx+\int\frac{-2}{125\left(x-1\right)}dx+\int\frac{2}{125\left(x+4\right)}dx

Take the constant 125\frac{1}{25} out of the integral

125∫1(xβˆ’1)2dx\frac{1}{25}\int\frac{1}{\left(x-1\right)^2}dx

Apply the formula: ∫n(x+a)cdx\int\frac{n}{\left(x+a\right)^c}dx=βˆ’n(cβˆ’1)(x+a)(cβˆ’1)+C=\frac{-n}{\left(c-1\right)\left(x+a\right)^{\left(c-1\right)}}+C, where a=βˆ’1a=-1, c=2c=2 and n=1n=1

125βˆ’1(2βˆ’1)(xβˆ’1)(2βˆ’1)\frac{1}{25}\frac{-1}{\left(2-1\right)\left(x-1\right)^{\left(2-1\right)}}

Simplify the expression

βˆ’125(xβˆ’1)\frac{-1}{25\left(x-1\right)}
4

The integral ∫125(xβˆ’1)2dx\int\frac{1}{25\left(x-1\right)^2}dx results in: βˆ’125(xβˆ’1)\frac{-1}{25\left(x-1\right)}

βˆ’125(xβˆ’1)\frac{-1}{25\left(x-1\right)}

Take the constant 125\frac{1}{25} out of the integral

125∫1(x+4)2dx\frac{1}{25}\int\frac{1}{\left(x+4\right)^2}dx

Apply the formula: ∫n(x+a)cdx\int\frac{n}{\left(x+a\right)^c}dx=βˆ’n(cβˆ’1)(x+a)(cβˆ’1)+C=\frac{-n}{\left(c-1\right)\left(x+a\right)^{\left(c-1\right)}}+C, where a=4a=4, c=2c=2 and n=1n=1

125βˆ’1(2βˆ’1)(x+4)(2βˆ’1)\frac{1}{25}\frac{-1}{\left(2-1\right)\left(x+4\right)^{\left(2-1\right)}}

Simplify the expression

βˆ’125(x+4)\frac{-1}{25\left(x+4\right)}
5

The integral ∫125(x+4)2dx\int\frac{1}{25\left(x+4\right)^2}dx results in: βˆ’125(x+4)\frac{-1}{25\left(x+4\right)}

βˆ’125(x+4)\frac{-1}{25\left(x+4\right)}

Take the constant 1125\frac{1}{125} out of the integral

1125βˆ«βˆ’2xβˆ’1dx\frac{1}{125}\int\frac{-2}{x-1}dx

Apply the formula: ∫nx+bdx\int\frac{n}{x+b}dx=nsign(x)ln⁑(x+b)+C=nsign\left(x\right)\ln\left(x+b\right)+C, where b=βˆ’1b=-1 and n=βˆ’2n=-2

βˆ’2(1125)ln⁑∣xβˆ’1∣-2\left(\frac{1}{125}\right)\ln\left|x-1\right|

Multiply the fraction and term in βˆ’2(1125)ln⁑∣xβˆ’1∣-2\left(\frac{1}{125}\right)\ln\left|x-1\right|

βˆ’2125ln⁑∣xβˆ’1∣-\frac{2}{125}\ln\left|x-1\right|
6

The integral βˆ«βˆ’2125(xβˆ’1)dx\int\frac{-2}{125\left(x-1\right)}dx results in: βˆ’2125ln⁑(xβˆ’1)-\frac{2}{125}\ln\left(x-1\right)

βˆ’2125ln⁑(xβˆ’1)-\frac{2}{125}\ln\left(x-1\right)

Take the constant 1125\frac{1}{125} out of the integral

1125∫2x+4dx\frac{1}{125}\int\frac{2}{x+4}dx

Apply the formula: ∫nx+bdx\int\frac{n}{x+b}dx=nsign(x)ln⁑(x+b)+C=nsign\left(x\right)\ln\left(x+b\right)+C, where b=4b=4 and n=2n=2

2(1125)ln⁑∣x+4∣2\left(\frac{1}{125}\right)\ln\left|x+4\right|

Multiply the fraction and term in 2(1125)ln⁑∣x+4∣2\left(\frac{1}{125}\right)\ln\left|x+4\right|

2125ln⁑∣x+4∣\frac{2}{125}\ln\left|x+4\right|
7

The integral ∫2125(x+4)dx\int\frac{2}{125\left(x+4\right)}dx results in: 2125ln⁑(x+4)\frac{2}{125}\ln\left(x+4\right)

2125ln⁑(x+4)\frac{2}{125}\ln\left(x+4\right)
8

Gather the results of all integrals

βˆ’125(xβˆ’1)+βˆ’125(x+4)βˆ’2125ln⁑∣xβˆ’1∣+2125ln⁑∣x+4∣\frac{-1}{25\left(x-1\right)}+\frac{-1}{25\left(x+4\right)}-\frac{2}{125}\ln\left|x-1\right|+\frac{2}{125}\ln\left|x+4\right|
9

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration CC

βˆ’125(xβˆ’1)+βˆ’125(x+4)βˆ’2125ln⁑∣xβˆ’1∣+2125ln⁑∣x+4∣+C0\frac{-1}{25\left(x-1\right)}+\frac{-1}{25\left(x+4\right)}-\frac{2}{125}\ln\left|x-1\right|+\frac{2}{125}\ln\left|x+4\right|+C_0

ξ ƒ Risposta finale al problema

βˆ’125(xβˆ’1)+βˆ’125(x+4)βˆ’2125ln⁑∣xβˆ’1∣+2125ln⁑∣x+4∣+C0\frac{-1}{25\left(x-1\right)}+\frac{-1}{25\left(x+4\right)}-\frac{2}{125}\ln\left|x-1\right|+\frac{2}{125}\ln\left|x+4\right|+C_0 ξ ƒ

Avete difficoltΓ  in matematica?

Accedete a soluzioni dettagliate passo dopo passo per migliaia di problemi, che crescono ogni giorno!