Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Scegliere un'opzione
- Sostituzione di Weierstrass
- Prodotto di binomi con termine comune
- Load more...
We can solve the integral $\int\sqrt{16-x^2}dx$ by applying integration method of trigonometric substitution using the substitution
Learn how to solve integrali con radicali problems step by step online.
$x=4\sin\left(\theta \right)$
Learn how to solve integrali con radicali problems step by step online. Integrate int((16-x^2)^(1/2))dx. We can solve the integral \int\sqrt{16-x^2}dx by applying integration method of trigonometric substitution using the substitution. Now, in order to rewrite d\theta in terms of dx, we need to find the derivative of x. We need to calculate dx, we can do that by deriving the equation above. Substituting in the original integral, we get. Factor the polynomial 16-16\sin\left(\theta \right)^2 by it's greatest common factor (GCF): 16.